
Evaluating functions Example 3

Reads as "f of x equals y". It means that the function named "f" has an input of x and an output of y. Function notation

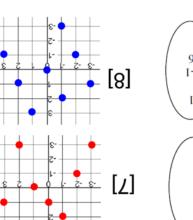
[3]

$$f(x) = 2x + 1$$
$$f(3) = \underline{\qquad \qquad}$$
$$f(\underline{\qquad \qquad}) = -1$$

[9]

[2] Determine if each graph shows a function or a relation only.

graph of a relation passes through more than one point, it is NOT a function.


Like in the scatter plot example on the last page, if a vertical line drawn on the

| Vertical line test

RELATION:

FUNCTION:

[4] $\{(2,-1),(3,0),(2,1),(-3,1)\}$ f(3)=

[9]

[6]

0 7 3

τ

[3]

[7]

 $\{(0,1),(1,\epsilon-),(1,2),(0,\epsilon),(1-,2)\}$ [S]

 $\{(0,2),(1,\epsilon),(2,1),(\epsilon,0),(2,1-)\} \ [\, \Gamma \,]$

Example Function or relation only?

A <u>relation</u> can be represented as an equation or in these ways:

Ordered pairs	Table	Graph	Mapping Diagram
{(-2,3),(2,0),(-2,0), (1,3),(1,0)}	х у	3 2 1 0 1 2 3 -1 -1 -2 -3 -3 -3 -1 -3 -3 -1 -3 -3 -3 -3 -1 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3	
	ху	-3 -2 -1 0 1 2 3 -1 -1 -2 -3 -3 -3 -1 -1 -1 -2 -2 -1 -3 -3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	$ \begin{array}{c c} -1 & -2 \\ 0 & -1 \\ 1 & 3 \end{array} $