Name(s):

Period:

Math Lab: Investigating Piecewise Functions

- **STEP A:** Cut out the graphs on the last two pages of the packet. Divide them equally between partners. Use transformations and extra guide points to accurately sketch each graph <u>in pencil</u>.
- **STEP B:** Check that each graph your partner sketched is correct, then trace over the sketch in the indicated color.
- **STEP C:** Cut VERTICAL line(s) along each of the domain values described in the piecewise function below for one subfunction at a time, working left to right. For example, if the subfunction is defined as $4(x + 3)^2 5$ when x < -3, cut a vertical line at x = -3 and discard unused sections of graph.
- **STEP D:** Glue the pieces of the subfunctions onto the coordinate plane beneath each piecewise function to create its graph. If the domain value is not included in the function (< or >), make an open circle at that point. If the domain value is included in the function (\leq or \geq), make a closed circle at that point. If the domain of any subfunction is half bounded, make an arrowhead on the end that extends toward either positive or negative infinity.
- **<u>STEP E:</u>** State the domain and range of each piecewise function using interval notation.
- **STEP F:** Identify the intervals of increasing, decreasing, and/or constant of each piecewise function.
- **<u>STEP G:</u>** Describe the end behavior of each piecewise function.
- **STEP H:** Identify the extrema of each piecewise function and classify each as a(n) absolute max, absolute min, relative max, or relative min.

After you have completed steps A-H, answer the analysis questions about the piecewise functions f(x), g(x), and h(x) below.

1] Which piecewise function has a bounded domain? What do you notice about its symmetry?	Evaluate the piecewise functions for the values below. If undefined, write Ø.
2] Which piecewise function has a half-bounded range? What do you notice about its domain?	8] $f(0) =$
3] Which piecewise function has infinite discontinuity? What do you notice about its extrema?	9] $g(0) =$
4] Which piecewise function has jump discontinuity? What do you notice about its symmetry?	10] $h(0) =$
5] Which piecewise function is odd? Give a set of ordered pairs demonstrating this relationship.	10] f(-2) =
6] Which piecewise function is even? Give a set of ordered pairs demonstrating this relationship.	11] $g(-2) =$
7] Which is your favorite piecewise function? Explain why.	12] $h(-2) =$

$f(x) = \begin{cases} 4(x + -2 x + 2) \\ -2 x + 2 \\ x^{2}2 x2 $	$3)^{2} - 5, x \le -3$ +4, -3 < x < -1 3, -1 ≤ x ≤ 1 2 +4, 1 < x < 3 · 3)^{2} - 5, x ≥ 3	$g(x) = \begin{cases} \sqrt[3]{x+1} \\ \frac{2}{x} \\ 2\sqrt{x-1} \end{cases}$	$\overline{-3} - 2, x \le -2$, $-2 < x < 2$ $\overline{2} + 1, 2 \le x < 3$ $3, x \ge 3$	$h(x) = \begin{cases} -\frac{1}{2}x - \frac{1}{2}x^{2} \\ -\frac{1}{2}x^{2} \\ -\frac{1}{2}x^{2} \end{cases}$	$5, -4 < x \le -2$ 3, -2 < x < 2 $+5, 2 \le x < 4$
Domain:	Range:	Domain:	Range:	Domain:	Range:
Increasing:		Increasing:		Increasing:	
Decreasing:		Decreasing:		Decreasing:	
Constant:		Constant:		Constant:	
End Behavior: $x \to -\infty, y \to$ $x \to \infty, y \to$	Extrema:	End Behavior: $x \to -\infty, y \to x \to \infty, y = x \to \infty, y = x \to \infty$	Extrema:	End Behavior: $x \rightarrow -4^+, y \rightarrow$ $x \rightarrow 4^-, y \rightarrow$	Extrema:

$y = 4(x+3)^2 - 5$ (RED)	y = -2 x+2 +4 (BLUE)	$y = -\frac{1}{2}x + 5$ (GREEN)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$y = \sqrt[3]{x+3} - 2$ (RED)	y = 3 (BLUE)	$y = x^2 - 3$ (RED)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

$y = 2/\chi$ (GREEN)	y = -2 x - 2 + 4 (BLUE)	$y = -\frac{1}{2}x - 5$ (RED)
4	4	4
3	3	3
_5 _4 _3 _2 _1 0 1 2 3 4 5 _1	_5 _4 _3 _2 _1 0 1 2 3 4 5	_5 _4 _3 _2 _1 0 1 2 3 4 5
-2	-2	-2
		3
-4	-4	-4
-5	-5	-5
$y = \frac{1}{2}x^3 (BLUE)$	$y = 4(x - 3)^2 - 5$ (RED)	$y = 2\sqrt{x-2} + 1$ (RED)
$y = \frac{1}{2}x^3$ (BLUE)	$y = 4(x - 3)^2 - 5$ (RED)	$y = 2\sqrt{x-2} + 1 \text{ (RED)}$
$y = \frac{1}{2}x^3$ (BLUE)	$y = 4(x - 3)^2 - 5 (\text{RED})$	$y = 2\sqrt{x - 2} + 1$ (RED)
$y = \frac{1}{2}x^3$ (BLUE)	$y = 4(x - 3)^2 - 5 (\text{RED})$	$y = 2\sqrt{x-2} + 1$ (RED)
$y = \frac{1}{2}x^{3} (BLUE)$	$y = 4(x - 3)^2 - 5 (\text{RED})$	$y = 2\sqrt{x - 2} + 1 \text{ (RED)}$
$y = \frac{1}{2}x^{3} (BLUE)$	$y = 4(x - 3)^2 - 5 (\text{RED})$	$y = 2\sqrt{x - 2} + 1 \text{ (RED)}$
$y = \frac{1}{2}x^{3} (BLUE)$	$y = 4(x - 3)^2 - 5 (\text{RED})$	$y = 2\sqrt{x-2} + 1 \text{ (RED)}$
$y = \frac{1}{2}x^{3} (BLUE)$	$y = 4(x - 3)^2 - 5 (\text{RED})$	$y = 2\sqrt{x - 2} + 1 \text{ (RED)}$
$y = \frac{1}{2}x^{3} (BLUE)$	$y = 4(x - 3)^2 - 5 (\text{RED})$	$y = 2\sqrt{x - 2} + 1 \text{ (RED)}$
$y = \frac{1}{2}x^{3} (BLUE)$	$y = 4(x - 3)^2 - 5 (\text{RED})$	$y = 2\sqrt{x - 2} + 1 \text{ (RED)}$