Name:	Period:	First	First attempt due:	Final
		Score:	Final compations due	Score:
<u>Practice</u>: Tra	nsformations		Final corrections due:	
True or False. If	false, correct the BOLD portion to mak	e it true.		
[1] -4 <i>f</i> ((x - 1) + 2 has only rigid transformatio	ns		
[2] -4 <i>f</i> ((x - 1) + 2 has been translated 1 unit to	the left and	1 up 2 units	
[3] -4 <i>f</i> ((x - 1) + 2 has been reflected in the x-a	xis		
[4] -4f((x - 1) + 2 has a dilation factor of 4, wh	ich is a ho	rizontal stretch.	-
[5] If $f(x)$	$f(x) = \frac{1}{x}$, then $-\frac{1}{4}f(x-1) + 2$ can be write	tten as $\frac{-1}{4(x-x)}$	<u>1</u> -1) + 2	
[6] If $f(x)$	$f(x) = x^3$, then $-4f(x-1) + 2$ can be write	ritten as –4	$4(x^3-1)+2.$	
[7] If $f(x)$	$f(-x-1) = \sqrt{x}$, then $4f(-x-1) + 2$ can be w	ritten as 4-	$\sqrt{-(x+1)} + 2.$	
[8] If (0,0)) is a point on the graph of $f(x)$, then (−1,2) is a	point on the graph of $f(x - 1) + 2$	·
[9] If (-1	1,5) is a point on the graph of $f(x)$, then	(1 , − 5) is	a point on the graph of $-f(-x)$.	
[10] If (-	5,1) is a point on the graph of $f(x)$, the	n (5 , -2) i	s a point on the graph of $f(-x) - 3$	·
Write the equation	on in standard form for each graph.			
[

Rewrite the function in standard form first. Then **check the box** for each type of transformation shown in the equation and fill in any missing information on the corresponding line.

 $[15] \quad g(x) = 2 - 2x^3 + 1$

Standard Form:_____

Type:_

- \Box vertical translation up ____ units
- □ vertical translation down ____ units
- □ horizontal translation right ____ units
- □ horizontal translation left ____ units
- □ reflection in the ____ axis
- □ dilation of ____; vertical stretch
- □ dilation of ____; vertical shrink

 $[16] \quad g(x) = \frac{1}{3}\sqrt{4-x} - 3$

Standard Form:_____

Type:__

- □ vertical translation up ____ units
- \Box vertical translation down ____ units
- $\hfill\square$ horizontal translation right ____ units
- $\hfill\square$ horizontal translation left ____ units
- \Box reflection in the ____ axis
- \Box dilation of ____; vertical stretch
- dilation of ____; vertical shrink

[17]
$$g(x) = 4 + \frac{1}{4}(x+1)^2 - 6$$

Standard Form:_____

Type:_

- vertical translation up ____ units
- vertical translation down ____ units
- horizontal translation right ____ units
- □ horizontal translation left ____ units
- reflection in the axis
- dilation of ____; vertical stretch dilation of ____; vertical shrink

[18] g(x) = 6 - |2x - 5 - x|

Standard Form:_____

Type:_

- vertical translation up ____ units
- vertical translation down ____ units
- horizontal translation right _____ units
- horizontal translation left units
- reflection in the ____ axis
- dilation of ____; vertical stretch
- dilation of ____; vertical shrink

Write the equation in standard form for the function that is described by the given characteristics.

[19] A parabola is reflected in the x-axis, translated down 4 units, and right 2 units.

[20] The parent graph of an absolute value function opens downward and has its vertex at (-4, 3).

[21] A radical function is only in the 2nd quadrant, and begins at (-2, 0).

[22] A cubic function has been reflected in the x-axis and vertically stretched by a factor of 3.

Use the three anchor points of the parent graph and transformations to find the coordinates of the new graph. Sketch the graph NEATLY, write the equation of the function in standard form, and find the domain and range in interval notation.

$$\begin{bmatrix} 23 \end{bmatrix} -\frac{1}{2}f(x-3) + 2 \text{ for } f(x) = |x|$$

$$\begin{bmatrix} Three & Multiply & Divide x- & Add & A$$

ndard form:

main:

nge:

ndard form:

main:

Range:

[25] $-f\left(\frac{1}{2}(x+2)\right)$ for $f(x) = x^2$

Three	Multiply	Divide x-	Add	Add
anchor	y-value	value by	h= to	k= to
points	by a=	b=	the x-value	the y-value

1