Practice: Transformations

First Score:	First attempt due:	Final Score:
	Final corrections due:	

True or False. If false, correct the BOLD portion to make it true.
\qquad [1] $-4 f(x-1)+2$ has only rigid transformations. \qquad
\qquad [2] $-4 f(x-1)+2$ has been translated 1 unit to the left and up 2 units.
[3] $-4 f(x-1)+2$ has been reflected in the \mathbf{x}-axis.
[4] $-4 f(x-1)+2$ has a dilation factor of 4 , which is a horizontal stretch.
[5] If $f(x)=\frac{1}{x}$, then $-\frac{1}{4} f(x-1)+2$ can be written as $\frac{\mathbf{1}}{4(x-1)}+\mathbf{2}$. \qquad
\qquad [6] If $f(x)=x^{3}$, then $-4 f(x-1)+2$ can be written as $\mathbf{- 4}\left(\boldsymbol{x}^{3}-\mathbf{1}\right)+\mathbf{2}$. \qquad
[7] If $f(x)=\sqrt{x}$, then $4 f(-x-1)+2$ can be written as $\mathbf{4} \sqrt{-(\boldsymbol{x}+\mathbf{1})}+\mathbf{2}$. \qquad
\qquad [8] If $(0,0)$ is a point on the graph of $f(x)$, then $(-\mathbf{1}, \mathbf{2})$ is a point on the graph of $f(x-1)+2$. \qquad
[9] If $(-1,5)$ is a point on the graph of $f(x)$, then $(\mathbf{1},-\mathbf{5})$ is a point on the graph of $-f(-x)$.
$[10]$ If $(-5,1)$ is a point on the graph of $f(x)$, then $(5,-2)$ is a point on the graph of $f(-x)-3$.
Write the equation in standard form for each graph.

Rewrite the function in standard form first. Then check the box for each type of transformation shown in the equation and fill in any missing information on the corresponding line.
[15] $g(x)=2-2 x^{3}+1$
Standard Form: \qquad
Type:
vertical translation up __ units
vertical translation down __ units
horizontal translation right \qquad units
horizontal translation left ___ units
\square reflection in the \qquad axis
\square dilation of \qquad ; vertical stretch
dilation of \qquad ; vertical shrink
[16] $g(x)=\frac{1}{3} \sqrt{4-x}-3$
Standard Form: \qquad
Type:
\square vertical translation up \qquad units
\square vertical translation down __ units horizontal translation right ___ units \square horizontal translation left ___ units reflection in the \qquad axis
\square dilation of \qquad ; vertical stretch
\square dilation of \qquad ; vertical shrink
[17] $g(x)=4+\frac{1}{4}(x+1)^{2}-6$
Standard Form: \qquad
Type:
$\square \quad$ vertical translation up __ units
\square vertical translation down \qquad units
\square horizontal translation right \qquad units
horizontal translation left \qquad units
reflection in the \qquad axis
\square dilation of \qquad ; vertical stretch
\square dilation of \qquad ; vertical shrink ;

Write the equation in standard form for the function that is described by the given characteristics.
[19] A parabola is reflected in the x-axis, translated down 4 units, and right 2 units.
[18] $g(x)=6-|2 x-5-x|$
Standard Form: \qquad
Type:
\square vertical translation up __ u units
\square vertical translation down __ units
\square horizontal translation right \qquad units
\square horizontal translation left \qquad units
\square reflection in the \qquad axis
\square dilation of \qquad ; vertical stretch \square dilation of ___ ; vertical shrink
[20] The parent graph of an absolute value function opens downward and has its vertex at $(-4,3)$.
[21] A radical function is only in the $2^{\text {nd }}$ quadrant, and begins at $(-2,0)$.
[22] A cubic function has been reflected in the x-axis and vertically stretched by a factor of 3 .

Use the three anchor points of the parent graph and transformations to find the coordinates of the new graph. Sketch the graph NEATLY, write the equation of the function in standard form, and find the domain and range in interval notation.
$[23]-\frac{1}{2} f(x-3)+2$ for $f(x)=|x|$

Three anchor points	Multiply y -value $\mathrm{by} \mathrm{a}=$	Divide x - value by $\mathrm{b}=$	Add $\mathrm{h}=\quad$ to the x -value	Add $\mathrm{k}=\quad$ to y -value

[24] $2 f(-x)-1$ for $f(x)=\sqrt[3]{x}$

Three anchor points	Multiply y -value $\mathrm{by}=$	Divide $\mathrm{x}-$ value by $\mathrm{b}=$	Add $\mathrm{h}=\ldots$ to the x -value	Add $\mathrm{k}=$ the y -value

[25] $-f\left(\frac{1}{2}(x+2)\right)$ for $f(x)=x^{2}$

Three anchor points	Multiply y -value by $\mathrm{a}=$	Divide x - value by $\mathrm{b}=$	Add $\mathrm{h}=\quad$ to the x -value	Add $\mathrm{k}=\quad$ to y -value

Standard form:

Domain:

Range:

Standard form:

Domain:

Range:

