ODD polynomials have ALL ODD exponents.

$$c(x) = x^6 - 2x^2 + 3$$

$$3(x) = x^3 - 3$$

$$c(x) = x^6 - 2x^2 + 3$$

 $d(x) = x^3 - 3$

$$=x^6-2x^2+3$$
$$=x^3-3$$

$$f(x) = x^6 - 3$$

 $e(x) = 4x^5 - 2x$

$$(x) - x^2 - 3$$
$$(x) = 4x^5 - 2x^3$$

$$f(x) - x - 3$$

 $e(x) = 4x^5 - 2x^3 + 3x$

$$=x^{o}-5$$

$$=4x^{5}-2x^{3}+$$

 $|\varsigma - x| = (x) f$ [5

Verifying algebraically

the function, it is odd.

If you get back the opposite of the original function, it is even. and simplify. If you get back

Substitute -x in the function

 $x \searrow 6-=(x) f$ [8

Example 3

 $0I - {}^{2}x = (x) \mathcal{F} [A$

(x) f = (x-) f

Odd functions:

(x) f = (x-) f

Even functions:

ZVQM

Functions

y-axis symmetry:

origin (rotational) symmetry:

58 7 ٤-7g ヤ-58 9-69 X

Þ	3
0	7
2-	l
2-	0
0	1-
7	2-
10	6-
λ	X

If (x, y) and (-x, -y) are in the table = **odd function**

If (x, y) and (-x, y) are in the table = **even function**

2/3	3
l	7
7	l
error	0
2-	1-
l-	շ-
5/2-	£-
λ	X

When looking at a table... Using a table of ordered pairs

Example 1 Using the graph

When looking at the graph, first make sure it is a function, then...

Symmetry about the y-axis = even function

Symmetry about the origin = **odd function**











