PARTNERS: Factoring out the GCF

Distributing is the process of multiplying a term in front of parenthesis to each term inside the parenthesis. For example, $14 x(x+2)$ becomes $14 x(x)+14 x(2)$ when you distribute the $14 x$ to each of the terms in the parenthesis. Then simplifying gives you $14 x^{2}+28 x$. Doing this process in reverse is called factoring.

When you factor a polynomial, you are trying to find the quantities that you multiply together in order to create the polynomial. The greatest common factor (GCF) for a polynomial is the largest monomial that is a factor of (divides) each term of the polynomial. Note: The GCF must be a factor of EVERY term in the polynomial.

The hardest part of factoring out a GCF is determining what the greatest common factor of each term in the polynomial is. To factor $14 x^{2}+28 x$, you could find the GCF this way...

Factor the GCF from the polynomials below.

$245 x^{2}-315 x$	$240 x^{2}-180 x+45$	$4 x(x+7)-10(x+7)$

Partner Practice: Factor out the GCF from the quadratic equations on one side while your partner does the other side. Both sides should have the same GCF but different factored forms.

	GCF			
1$]$	$6 x^{2}+15$		$1]$	$12 x^{2}-9$
2]	$32 x^{2}-80 x$		$48 x^{2}+64 x$	
3]	$72 x^{2}+24 x-144$			

		GCF		
4] $224 x^{2}+280 x-336$		$4]$	$392 x^{2}-168 x+112$	
5]				

