Math Lab: Graphing Quadratic Equations in Vertex Form

What are the characteristics of the parent graph of a quadratic function?

Complete the table and plot the points to sketch the graph of $\boldsymbol{y}=\boldsymbol{x}^{2}$.

x	$y=x^{2}$
-3	
-2	
-1	
0	
1	
2	
3	

The shape of a quadratic function is called a U-shaped graph called a \qquad .

The highest or lowest point on the curve is the \qquad . On the parent graph it is located at the \qquad .

The \qquad is the vertical line passing through the vertex. The domain of $y=x^{2}$ is \qquad and the range is \qquad .

How do you graph a quadratic function in vertex (transformation) form?
The transformations we learned for absolute value functions work the same way for quadratic functions, EXCEPT that you can only use the a-value as the slope from the vertex to the point one unit right and left of the vertex.

$$
y=a(x-h)^{2}+k
$$

Reflection	Dilations	Horizontal Translations	Vertical Translations
$a>0$ opens up	$\|a\|>1$ narrows the graph	$(x-h)$ shifts right h units	$-k$ shifts down k units
$a<0$ opens down (reflection over the x -axis)	$\|a\|<1$ widens the graph	$(x+h)$ shifts left h units	$+k$ shifts up k units

A] $y=-(x-1)^{2}+2$
B] $y=\frac{1}{2}(x+1)^{2}$

Domain:
Range:

C] $y=2 x^{2}-3$

Domain:
Range:

