Practice: ## **Quadratics in Vertex Form** ## For #1-6, fill in the blanks. Then NEATLY sketch the graphs in pencil. 1] $y = (x - 3)^2$ Axis of Symmetry is x=____ Vertex: (____, ___) Opens up or down? Use $\it a$ to find pts 1 unit L/R of vertex at (___,___) and (___,___) y-intercept: (0,___) extra points (1, ____) and (5,____) $2|y = -(x+3)^2 + 5$ Axis of Symmetry is x= Vertex: (____, ___) Opens up or down? Use $\it a$ to find pts 1 unit L/R of vertex First Score: at (___,___) and (___,___) y-intercept: (0,____) extra points (-5, ____) and (-6,___) $3| y = 2(x+1)^2 - 3$ Axis of Symmetry is x=____ Vertex: (____, ___) Final corrections due: Opens up or down? Use a to find pts 1 unit L/R of vertex at (____,___) and (____,___) y-intercept: (0,____) extra point (-3, ____) and (1, ____) 4] $y = -\frac{3}{2}(x-2)^2 + 6$ Axis of Symmetry is x=____ Vertex: (____, ___) Opens up or down? Use a to find pts 1 unit L/R of vertex at (___,___) and (___,___) y-intercept: (0,___) extra points (-1, ____) and (4,____) 5] $y = \frac{1}{2}(x-3)^2 + 2$ Axis of Symmetry is x=____ Vertex: (___, ___) Opens up or down? Use a to find pts 1 unit L/R of vertex at (___,__) and (___,__) y-intercept: (0,____) extra points (1, ____) and (6,____) 6) $y = -\frac{1}{4}(x+2)^2 + 1$ Axis of Symmetry is x=____ Vertex: (___, ___) Opens up or down? Use α to find pts 1 unit L/R of vertex at (____,___) and (____,___) y-intercept: (0,____) extra points (1, ____) and (-4,____) Equation: Domain: Range: Domain: Range: Equation: Equation: Domain: Range: Equation: Domain: Range: Equation: Domain: Range: Equation: Domain: Range: Write the quadratic function in standard form $y = ax^2 + bx + c$. Show all work. 13] $y = -(x+2)^2$ 14] $y = (x-2)^2 + 4$ 13] $$y = -(x+2)^2$$ 14] $$y = (x-2)^2 + 4$$ 15] $$y = 2(x-3)^2 + 9$$ **Bonus**: Write the equation in vertex form of the parabola that passes through the points shown in the graph. Show all work or explain your reasoning in detail.