Math Lab: Criss-cross Factoring

Recall that to change a quadratic expression from intercept form to standard form, you use repeated distribution (FOIL). The process of "undoing" distribution is called factoring. To change a quadratic expression from standard form $y=x^{2}+b x+c$ to intercept form $y=(x-p)(x-q)$, you can use the Criss-cross Method to factor when the leading coefficient is 1 .

EXAMPLE: Factor $y=x^{2}-21 x-72$ to rewrite it in intercept form, identify key features, and sketch the graph.
Step 1: Identify the a, b, and c from standard form and fill in the crisscross.

$$
\begin{aligned}
& y=x^{2}-21 x-72 \\
& a=\quad b=\quad c=
\end{aligned}
$$

Step 2: Find two integers that multiply to equal the top number and add to equal the bottom number.

Step 3: Write the integers in the empty spaces.

Step 4: Use the side values to rewrite the quadratic function in intercept form.

$$
y=(x-p)(x-q)
$$

Step 5: Use standard form and intercept form to find the coordinates of the y-intercept and x intercepts on the graph.

Factor to rewrite the quadratic in intercept form and label the coordinates of the points on the graph.

Factor to rewrite the quadratic in intercept form and find the characteristics of the graph.

Use the given information to write the quadratic in standard form, then factor to rewrite in intercept form.

9.	Standard form:	Standard form:	Standard form:
Standard form:	Intercept form:	Intercept form:	
Intercept form:			

Factor to rewrite the quadratic in intercept form and find the characteristics of the graph.

13. $y=x^{2}-4 x-21$	$\text { 14. } y=x^{2}+10 x+25$	15. $y=x^{2}-16 x-36$	16. $y=x^{2}+2 x-35$
Intercept form:	Intercept form:	Intercept form:	Intercept form:
y-int: (0,___)	y-int: (0,___)	y-int: (0,___)	y-int: (0,____)
x-int: \qquad ,0) and \qquad ,0)	x-int: \qquad ,0) and \qquad ,0)	x-int: \qquad ,0) and \qquad ,0)	x-int: \qquad ,0) and \qquad _(0)

