Math Lab: BOX Method Factoring

Example 1

Build a rectangular model of the quadratic trinomial using algebra tiles and sketch it below. Then write its area as a product. $x^{2}+\mathbf{7} \boldsymbol{x}+\mathbf{6}$	Box Method	Criss-cross

Example 2

Build a rectangular model of the quadratic trinomial using algebra tiles and sketch it below. Then write its area as a product. $2 x^{2}+7 x+3$	Box Method	Criss-cross

Example 3

Build a rectangular model of the quadratic trinomial using algebra tiles and sketch it below. Then write its area as a product. $\mathbf{3 \boldsymbol { x } ^ { 2 } + \mathbf { 8 x } \mathbf { + 4 }}$	Box Method	Criss-cross

Example 4

Build a rectangular model of the quadratic trinomial using algebra tiles and sketch it below. Then write its area as a product. $\mathbf{4 x ^ { 2 } - \mathbf { 8 x } + \mathbf { 3 }}$	Box Method	Criss-cross

BONUS
Build a rectangular model of the quadratic trinomial using algebra tiles and sketch it below. Then write its area as a product.

$$
2 x^{2}+3 x-5
$$

Factor each quadratic equation WITHOUT using the algebra tiles.
5] $8 x^{2}+14 x+3$

6] $4 x^{2}-4 x-15$

8] $5 x^{2}-27 x+10$

Practice factoring

Step 1. Make sure the equation is in standard form $a x^{2}+b x+c ; a$ must be positive.
Step 2. Divide out any common factors.
Step 3. If $a=1$, use the 'criss-cross method'. If $a>1$, use the 'box method'.
Step 4. Check the signs.
Note: If the quadratic does not factor, write "DNF".

9$] 3 x^{2}-19 x+6$	$10] 12 x^{2}-2(4 x-2)$	$11] 4\left(x^{2}+x\right)-4 x-9$
12$] 10 x^{2}-9-4 x^{2}-15 x$	$13] 2 x^{2}+3 x-1+2 x$	$14] 3\left(x^{2}+x+1\right)-2\left(x^{2}+1\right)-x$

