Math Lab: Factoring with Perfect Squares

Perfect Square Trinomials

Example A

Example B

Write the area as a sum.			Sketch the tiles as a rectangle and write the area as a product.	Factor using the box-method.
+	+			
$+$	$+$	+		

These are examples of perfect square trinomials. If you recognize that a quadratic is a perfect square trinomial, you can use this short-cut to factor it rather than using the box-method.

Perfect Square Trinomials

$$
\begin{aligned}
& a^{2}-2 a b+b^{2}=(a-b)^{2} \\
& a^{2}+2 a b+b^{2}=(a+b)^{2}
\end{aligned}
$$

Determine if the quadratic is a perfect square trinomial. If so, factor it using the short-cut.

1] $x^{2}+12 x+36$	2] $x^{2}-7 x+49$	3] $9 x^{2}+30 x+25$
4] $4 x^{2}-36 x+81$	5] $16 x^{2}+8 x+1$	$6] 25 x^{2}-35 x+49$

Example C

Sketch the tiles as a rectangle and write the area as a product.

Factor using the box-method.

Example D

Sketch the tiles as a rectangle and write the area as a product.

Factor using the box-method.

These are examples of a difference of squares binomial. If you recognize that a quadratic is a difference of squares, you can use this short-cut to factor it rather than using the box-method.

Difference of Squares

$$
a^{2}-b^{2}=(a+b)(a-b)
$$

Determine if the quadratic is a difference of squares. If so, factor it using the short-cut.

7$] x^{2}-49$	$8] 25 x^{2}-36$	$9] x^{2}+16$
10$] 4 x^{2}-81$	$11] 49 x^{2}+64$	$12] 100 x^{2}-1$

