$$
\begin{aligned}
& e^{(9-x)} \\
& (9 \varepsilon+x e 1-x) e \\
& =Z \angle+x_{\searrow} Z-z^{x} Z[\square
\end{aligned}
$$

$$
\begin{aligned}
& ={ }_{2} x Z \varepsilon-z \text { [0 } \\
& (5-x \varphi)(5+x \varphi) \\
& =\mathrm{s} Z+{ }_{z}{ }^{x}[\forall
\end{aligned}
$$

$$
Z L-{ }_{z} x Z-[\rfloor
$$

$$
\varepsilon-{ }_{z} x \operatorname{col}[\exists
$$

$$
I-z^{x} 6 t[\square
$$

$$
x_{00 I}-{ }_{z} x_{\square}
$$

$$
18-{ }_{z} x_{6} \text { [8 }
$$

$$
\mathrm{SZ}+{ }_{z} x-[\forall
$$

SOQ e S

$$
\begin{aligned}
& (q-p)(q+p)={ }_{z} q-{ }_{z} p
\end{aligned}
$$

Example 3 Solving Equations
$2 x^{2}-21 x+12=15(x-10)$

Perfect Square Trinomial \&

Difference of Squares

are special factoring patterns that have shortcuts so you don't HAVE to use the Criss-cross and/or Box methods to factor completely.

Example 1 Shortcuts for Perfect Square Trinomials

$$
\begin{array}{cl}
\text { Perfect Square Trinomials } & \begin{array}{l}
\text { Step 1: } a \text { must be positive, so if } a<0, \text { factor out }-1 . \\
a^{2}-2 a b+b^{2}=(a-b)^{2}
\end{array} \\
\begin{array}{ll}
\text { Step 2: Factor out a GCF if one exists. }
\end{array} \\
a^{2}+2 a b+b^{2}=(a+b)^{2} & \text { Does 3ultiply the square root of the first and last terms, then double it. } \\
& \text { Step 4: If it is a PST, use the shortcut! If not, use another method. }
\end{array}
$$

$\mathrm{A}]-x^{2}+8 x-16$
B] $x^{2}-13 x+36$

C] $9 x^{2}+24 x+16$

D] $-2 x^{2}+10 x-8$
ㅌ] $4 x^{2}+20 x+25$
F] $8 x^{2}-24 x+18$

